Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals

نویسندگان

  • Geovany A. Ramírez
  • Tadas Baltrusaitis
  • Louis-Philippe Morency
چکیده

During face-to-face communication, people continuously exchange para-linguistic information such as their emotional state through facial expressions, posture shifts, gaze patterns and prosody. These affective signals are subtle and complex. In this paper, we propose to explicitly model the interaction between the high level perceptual features using Latent-Dynamic Conditional Random Fields. This approach has the advantage of explicitly learning the sub-structure of the affective signals as well as the extrinsic dynamic between emotional labels. We evaluate our approach on the Audio-Visual Emotion Challenge (AVEC 2011) dataset. By using visual features easily computable using off-theshelf sensing software (vertical and horizontal eye gaze, head tilt and smile intensity), we show that our approach based on LDCRF model outperforms previously published baselines for all four affective dimensions. By integrating audio features, our approach also outperforms the audio-visual baseline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Analysis of Multi-Directional Functionally Graded Panels and Comparative Modeling by ANN

In this paper dynamic analysis of multi-directional functionally graded panel is studied using a semi-analytical numerical method entitled the state-space based differential method (SSDQM) and comparative behavior modeling by artificial neural network (ANN) for different parameters. A semi-analytical approach which makes use the three-dimensional elastic theory and assuming the material propert...

متن کامل

Dynamic texture modeling and synthesis using multi-kernel Gaussian process dynamic model

Dynamic texture (DT) widely exists in various social video media. Therefore, DT modeling and synthesis plays an important role in social media analyzing and processing. In this paper, we propose a Bayesian-based nonlinear dynamic texture modeling method for dynamic texture synthesis. To capture the non-stationary distribution of DT, we utilize the Gaussian process latent variable model for dime...

متن کامل

Modeling Wisdom of Crowds Using Latent Mixture of Discriminative Experts

In many computational linguistic scenarios, training labels are subjectives making it necessary to acquire the opinions of multiple annotators/experts, which is referred to as ”wisdom of crowds”. In this paper, we propose a new approach for modeling wisdom of crowds based on the Latent Mixture of Discriminative Experts (LMDE) model that can automatically learn the prototypical patterns and hidd...

متن کامل

Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing

We present a discriminative, latent variable approach to syntactic parsing in which rules exist at multiple scales of refinement. The model is formally a latent variable CRF grammar over trees, learned by iteratively splitting grammar productions (not categories). Different regions of the grammar are refined to different degrees, yielding grammars which are three orders of magnitude smaller tha...

متن کامل

Conditional Models for 3d Human Pose Estimation

OF THE DISSERTATION Conditional Models for 3D Human Pose Estimation by ATUL KANAUJIA Dissertation Director: Dimitris Metaxas Human 3d pose estimation from monocular sequence is a challenging problem, owing to highly articulated structure of human body, varied anthropometry, self occlusion, depth ambiguities and large variability in the appearance and background in which humans may appear. Conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011